Spectroscopy of ^{63,65,67}Mn: Strong Coupling in the Island of Inversion with N~40 & Implication in Urca Cooling in the Accreted Neutron Star Crust

Zhong Liu

Institute of Modern Physics, CAS

The International Symposium on Simplicity, Symmetry and Beauty of Atomic Nuclei In honor of Professor Arima's 88th birthday

Prof. Arima is much appreciated as an outstanding scientist, bringing simplicity, symmetry and beauty to nuclear structure; a beloved colleague, promoting scientific cooperation between China and Japan; an excellent educator, making our life more enjoyable by poetry, broad and profound knowledge on history, liberal art ... ²

Content

(1) In-beam γ spectroscopy of ^{63,65,67}Mn: Strong Coupling in the Island of Inversion with N~40

(2) Alpha-decay of short-lived actinides with N~130: Crossing the boundary between spherical and deformed nuclei (octupole + quadrupole)

odd-mass nuclei

Spectroscopy of ^{63,65,67}Mn

Levels in odd-A nuclei sensitive to deformation of the core and the configuration of the unpaired nucleon provide more detailed insight into the structure evolution

But data are scarce due to experimental challenges

- * Higher level density
- * More complicated level structures
- * Especially in deformed odd-A nuclei

Situation even more challenging in deformed odd-odd nuclei

Experimental Setup

(1) **BigRIPS: RI beam production and purification:** $B\beta$ - ΔE - $B\beta$

- (2) Particle identification: $B\beta$, TOF, ΔE
- (3) target and detector systems: MINOS +DALI2
- (4) **ZDS:** reaction residue identification: $B\beta$, TOF, ΔE

${}^{68}\text{Fe}(p,2pxn){}^{63,65,67}\text{Mn}: x = 4, 2 and 0$

PID before and after the Liquid H₂ target

γ transitions identified in ^{63,65,67}Mn

level schemes in ${}^{63,65,67}Mn$ J^{π} based on systematics and SM calculations **decay pattern:** Δ I=1 transitions dominate

Shell model calculations (LNPSm) reproduced data very well dominance of 4p-4h neutron configuration

^{65,67}Mn: strongly coupled bands with K = 5/2 ⁶³Mn: transitional feature between decoupling and strong coupling

The signature staggering can be attributed to the softness in the PES suggested in the MCSM and constrained HFB plus local q.p. RPA

A textbook example of structure evolution observed in odd-A Mn weak coupling → decoupling → strong coupling X.Y. Liu et al., Physics Letters B 784 (2018) 392–396

first observed in a single isotopic chain on the n-rich side

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Spectroscopy of ${}^{65,67}_{25}$ Mn: Strong coupling in the N = 40 "island of inversion"

X.Y. Liu^{a,b}, Z. Liu^{a,*}, B. Ding^{a,*}, P. Doornenbal^c, A. Obertelli^{c,d,e}, S.M. Lenzi^f,

Many thanks to

SEASTAR collaboration Data analysis: X.Y. Liu, B. Ding SM calculations: S. Lenzi

Discussions with J. Meng, Y. Sun, F.R. Xu and H. Jin

Urca cooling process in accreting neutron star crust

H. Schatz et al. Nature 505, 62(2014)

Surface burning ashes, sinking to the NS crust can undergo EC/β⁻-decay cycling, leading to strong v-cooling: Urca process

Urca cooling pairs predicted in n-rich deformed regions N~40 region is one of such regions

⁶⁵Fe-⁶⁵Mn: Urca cooling pair

Our results rule out ⁶⁵Fe-⁶⁵Mn as Urca cooling pair as J^π not match

Instead ⁶³Fe-⁶³Mn is Urca cooling pair

Alpha decay spectroscopy at SHANS --digital pulse processing 技术

Summary of the results

Ne	ew short	t-lived is	otope ²²³	Np and t	the abse a_{126}	130	131	new isotope ²²⁴ Np				
Ph	Phys. Lett. B 771 (2017) 303							224Np	(accepted in PRC)			
							9.477 2.15μs	9.147 38 μs	8.030	8.000 25 mg	7.051 0.51 c	
Al 220	pha-dec Pa estal	ay chain blished u	of the sl sing a di	hort-live gital pul	d isotop se	222U 9.310 4.7 μs	223U 8.993 57 μs	fine structure in ²²³ U (to be submitted)				
Phys. Rev. C 96 (2017) 014324							221Pa	222Pa	223Pa	224Pa	225Pa	
	91	167ms	3.6 ms	113 μs	60 ns	9.920 0.90μs	9.080 5.9 μs	2.9 ms	5.10 ms	0,79 s	1.8 ms	
	90	215Th 7.522 1.2 s	216Th 7.923 26 ms	217Th 9.250 252 μs	218Th 9.666 109 ns	219Th 9.340 1.05 μs	220Th 8.790 9.7 μs	221Th 8.146 1.68 ms	222Th 7.982 2.8 ms			
	89	214Ac 7.215 8.2 s	215Ac 7.604 0.17 s	216Ac 9.072 0.44 ms	217Ac 9.650 69 ns	218Ac 9.205 1.08 μs	219Ac 8.664 11.8 μs	220Ac 7.86 26.4 ms				
	88	213Ra 6.732 2.7min	214Ra 7.137 2.435 s	215Ra 8.699 1.55 ms	216Ra 9.349 0.18 μs	217Ra 8.99 1.6 μs	218Ra 8.39 25.6 μs	219Ra 7.678 10 ms				

Thank you for your attention

Happy Rice-age Birthday to Arima Sensei!

Health, happiness and longevity to you !

