In honor of Prof. A. Arima's rice (米) age

Investigation of the Linear-Chain States in ¹⁴⁻¹⁶C

Yanlin Ye School of Physics and State Key Lab of Nuclear Physics and Technology , Peking University

Sept. 27, 2018, Shanghai

Greetings to Prof. A. Arima

Simplicity, Symmetry and Beauty

のは南山

With inherent passion Prof. A. Arima has long been working effectively for academic research and organizations;

All of us are respecting and benefited from his great and beautiful achievements;

Rice (米-88) age is still very young;

Let's meet again in his tea (茶-108) years!

Exactly 20 years ago

At the centennial celebration of Peking University in 1998

I. Some background

II. Studies on ¹⁴⁻¹⁶C

III. Some perspectives

Clustering in unstable nuclei – a new area another kind of regulation & beauty

[299] D.H. Wilkinson, Nucl. Phys. A 452 (1986) 296.

W.Von Oerttzen et al., Phys. Report 432(06)43

Exotic regulation happens at high excitations

Clustering in the universe

Annu.Rev. Astron. Astrophysics 41(2003)57

疏散星团 M45(昴星团)

Clustering in hadrons

QCD: There are many other possible color singlets.

Impact on the nuclear-astrophysics

ELSEVIER

Nuclear Physics A 834 (2010) 647c-650c

www.elsevier.com/locate/nuclphysa

Nuclear Clusters in Astrophysics

S. Kubono^a, Dam N. Binh^a, S. Hayakawa^a, H. Hashimoto^a, D. Kahl^a, Y. Wakabayashi^a, H. Yamaguchi^a, T. Teranishi^b, N. Iwasa^c, T. Komatsubara^d, S. Kato^e, Le H. Khiem^f

Clustering is featured by :

- non-linearity ;
- self-stabilization;
- Depending on some confinement & residue interaction.

New simplicity, symmetry and beauty

Theoretical descriptions

Theory: AMD, GCM(RGM), MO, GTCM, FMD, TCSM, TCHO(DHO), ...

J. Phys. G: Nucl. Part. Phys. 37 (2010) 064021

Coexistence of cluster states and mean-field-type states

Hisashi Horiuchi

Progress of Theoretical Physics Supplement No. 192, 2012

Recent Developments in Nuclear Cluster Physics

Hisashi HORIUCHI,^{1,2} Kiyomi IKEDA³ and Kiyoshi KAT $\bar{\mathrm{O}}^4$

¹Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

Progress in Particle and Nuclear Physics 82 (2015) 78-132

Review

Cluster models from RGM to alpha condensation and beyond

Y. Funaki^{a,*}, H. Horiuchi^{b,c}, A. Tohsaki^b

^a Nishina Center for Accelerator-Based Science, The institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

^b Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

^c International Institute for Advanced Studies, Kizugawa 619-0225, Japan

Possible chain states based on α-cores

¹²Be: An exp. at RIBLL1@HIRFL, Lanzhou

Example of studies for ¹²Be

I. Some background

II. Studies on ¹⁴⁻¹⁶C

III. Some perspectives

Latest AMD calculations for ¹⁴C

T. Baba and M. Kimura PRC94(2016)044303

T. Baba and M. Kimura PRC95(2017)064318

Major improvements:

- Gogny D1S force to better describe E_x;
- Projected single particle wave function for valence neutrons to distinguish the π-bond or σ-bond states;
- core excitation included and the reduced decay-width deduced accordingly.

$$E'^{\pi} = \frac{\langle \Phi^{\pi} | H | \Phi^{\pi} \rangle}{\langle \Phi^{\pi} | \Phi^{\pi} \rangle} + v_{\beta} (\langle \beta \rangle - \beta_0)^2 + v_{\gamma} (\langle \gamma \rangle - \gamma_0)^2$$

$$\widetilde{\phi}_s = \sum_{\alpha=1}^A f_{\alpha s} \widetilde{\varphi}_{\alpha}.$$

$$j(j+1) = \langle \widetilde{\phi}_s | \hat{j}^2 | \widetilde{\phi}_s \rangle, \quad |j_z| = \sqrt{\langle \widetilde{\phi}_s | \hat{j}_z^2 | \widetilde{\phi}_s \rangle},$$
$$l(l+1) = \langle \widetilde{\phi}_s | \hat{l}^2 | \widetilde{\phi}_s \rangle, \quad |l_z| = \sqrt{\langle \widetilde{\phi}_s | \hat{l}_z^2 | \widetilde{\phi}_s \rangle},$$

$$\gamma_{lj^{\pi'}}^2(a) = \frac{\hbar^2}{2\mu a} [ay_{lj^{\pi'}}(a)]^2$$

$$y_{lj^{\pi\prime}}(r) = \sqrt{\frac{A!}{4!(A-4)!}} \langle \phi_{\alpha}[\phi_{\mathrm{Be}}(j^{\pi\prime})Y_{l0}(\hat{r})]_{J^{\pi}M} |\Psi_{Mn}^{J^{\pi}}\rangle,$$

^xC: triangle, and π -bond or σ -bond linear-chain states

FIG. 2. The density distribution of (a) ⁸Be, the positive-parity states of ¹⁰Be with valence neutrons in a (b) π orbit and (c) σ orbit, and (d), (e) negative-parity states of ¹⁰Be. The contour lines show the proton density distributions. The color plots in panels (b) and (c) show the single-particle orbits occupied by the most weakly bound neutron. In the negative-parity state, the color plots of panel (d) show the single-particle orbits occupied by the most weakly bound neutron, and those of panel (e) show the other valence neutron.

most exotic one: σ-bond linear-chain state T. Baba and M. Kimura, PRC95(2017)064318

¹⁴C: triangle, and π -bond or σ -bond linear-chain states

T. Baba and M. Kimura, PRC95(2017)064318

Decay-selectivity for σ -LCS

T. Baba and M. Kimura, PRC95(2017)034318

TABLE II. Excitation energies (MeV) and α -decay widths (keV) to the 2 ⁺ state of ¹⁰ Be									
$\underbrace{(\alpha, \alpha)}_{\alpha, \alpha} \alpha \underbrace{(\alpha, \alpha)}_{\alpha, \alpha} a \underbrace{(\alpha, \alpha)}_{\alpha} a \underbrace{(\alpha, \alpha)}_{\alpha, \alpha} a \underbrace{(\alpha, \alpha)}_{\alpha, $									
		π -bond linear of	σ -bond	σ -bond linear chain					
J^{π}	E_x	$\Gamma_{\alpha}(5.2 \text{fm})$	$\Gamma_{\alpha}(6.0 \mathrm{fm})$	E_x	$\Gamma_{\alpha}(6.0 \mathrm{fm})$				
0+	14.64			22.16	0.6				
2+	15.73	\frown		22.93	0.2				
4+	17.98	118	111	24.30	1.8				
6^{+}	21.80	256	271	26.45	0.4				
8+	27.25	397	421	29.39	0.8				

T. Baba and M. Kimura, PRC95(2017) 034318

TABLE III. Partial decay widths (keV) in six different channels for (a) the σ -bond linear-chain states and (b) $J^{\pi} = 6^+, 8^+$ states of the π -bond linear chain. The channel radius *a* is 6.0 fm.

(a) σ -bond linear chain									
J^{π}	E_x	$\Gamma(^{10}\text{Be}(0^+_1;\pi^2))$	$\Gamma(^{10}\text{Be}(2^+_1;\pi^2))$	$\Gamma({}^{16}\text{Be}(0^+_2;\sigma^2))$	$\Gamma(^{10}\text{Be}(1^1;\pi\sigma))$	$\Gamma(^{10}\text{Be}(2^1;\pi\sigma))$	$\Gamma(^{6}\text{He} + {}^{8}\text{Be})$		
0^{+}	22.16	0.2	0.6	136	0.2	_	38		
2^{+}	22.93	0.4	0.2	99	0.1	0.1	29		
4+	24.30	0.3	1.8	63	4.0	2.7	23		
6+	26.45	0.2	0.4	42	0.2	0.6	17		
8^{+}	29.39	0.2	0.8	17	2.9	5.6	13		
				(b) π -bond linear cha	in				
6+	21.80	151	271	0.0	0.0	0.0	0.0		
8+	27.25	120	421	0.0	0.2	0.0	1		

Structural link in decay scheme — exp.

Previous experiments for ¹⁴C

Recently reported results

14.3(1)Present measurements $E_{c.m.}$ E_x J^n U_{ct} <th< th=""></th<>
--

M. Freer et al., PRC90(2014) 054324; α (¹⁰Be, α)¹⁰Be, E_x =13 to 24 MeV A. Fritsch et al., PRC93(2016)014321; α(¹⁰Be, α)¹⁰Be, *E*_x=15.0 to 20.7 MeV

Recently reported results H.Yamaguchi et al., PLB766(2017)11

Table 1

The resonance parameters in ¹⁴C determined by the present work, compared with the AMD calculation [18]. Parameters in bold letters are for LCCS predicted in the calculation, and the corresponding experimental resonances. Previously observed states with their J^{π} determined are also shown, but they do not necessarily correspond to the present measurement. See [12,20–27,30,31] for complete data, including other states. Note that the theoretical E_{ex} is after the threshold normalization.

Present Work				Suhara & En'yo [18]			Other Experiments	
$E_{\rm ex}$ (MeV)	Jπ	Γ_{α} (keV)	θ_{α}^2	$E_{\rm ex}$ (MeV)	Jπ	θ_{α}^2	$E_{\rm ex}$ (MeV)	Jπ
14.21	(2+)	17(5)	3.5%					
14.50	1-	45(14)	4.5%				14.67	6+ [12]
							14.717	4 ⁺ [21]
							14.87	5- [12]
15.07	0+	760(250)	34(12)%	15.1	0+	16%	15.20	4- [21]
							15.56	3- [25]
16.22	2+	190(55)	9.1(27)%	16.0	2+	15%	15.91	4 ⁺ [21]
16.37	(4+)	15(4)	3.0%				16.43	6+ [12]
16.93	(2+)	270(85)	10.3%				16.9	0 + [27]
17.25	(1-)	190(45)	5.5%				17.30	3- [30]
							17.30	4- [12]
							17.99	2+ [30]
18.02	(3-)	31(19)	1.3%				18.22	4+ [30]
18.63	5-	72(48)	9.4%				18.83	5- [30]
18.87	4+	45(18)	2.4(9)%	19.2	4+	9%		

Latest AMD calculations for ¹⁶C

Characteristic α and ⁶He decays of linear-chain structures in ¹⁶C

T. Baba¹ and M. Kimura^{1,2}

¹Department of Physics, Hokkaido University, 060-0810 Sapporo, Japan ²Reaction Nuclear Data Centre, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan

FIG. 3. The schematic figure showing the π and σ orbits around the linear chain. The combination of the π orbits around ¹⁰Be perpendicular to the symmetry axis generates π orbits, while the combination of parallel orbits around ¹⁰Be generates σ orbits.

TABLE III. Excitation energies (MeV (MeV^{1/2}), α -cluster and neutron spectroscc selected positive-parity states. The reduced w factors are calculated for the decays to the gr nuclei.

Band	J^{π}	E_x	$\gamma_{\alpha}(6.0 \text{ fm})$	S_{α}	S_n
Ground	0_{1}^{+}	0.00	0.00	0.03	0.22
	2_{1}^{+}	1.69	0.00	0.00	0.35
	41+	4.04	0.00	0.00	0.01
Triangular	0^{+}_{2}	8.35	0.01	0.05	0.12
	2_{4}^{+}	10.22	0.00	0.00	0.01
	2_{5}^{+}	10.79	0.00	0.01	0.02
Linear chain	0_{6}^{+}	16.81	0.28	0.11	0.00
	2_{9}^{+}	17.51	0.23	0.07	0.00
	4^{+}_{10}	18.99	0.26	0.09	0.00
	6_{5}^{+}	21.49	0.23	0.07	0.00

The positive-parity energy levels up to $J \pi = 8+$.

FIG. 7. Calculated α -decay reduced widths. Panels (a)–(c) show the decay of the positive-parity states to the ground band of ¹²Be. Panels (d)–(f) show the decay of the negative-parity states to the ground band of ¹²Be. The channel radii *a* are 6.0 fm for panels (a)–(c) and 5.5 (left side), 7.0 (right side) fm for panels (d)–(f), respectively.

Basic considerations for our experimentation

- Projectile and target in favor of cluster formation
- Large Q-value reaction in order to excite highlying states in ¹⁴C and to have a good selection of the states in ¹⁰Be fragment;

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 95, 021303(R) (2017)

Selective decay from a candidate of the σ -bond linear-chain state in ¹⁴C

J. Li,¹ Y. L. Ye,^{1,*} Z. H. Li,¹ C. J. Lin,² Q. T. Li,¹ Y. C. Ge,¹ J. L. Lou,¹ Z. Y. Tian,¹ W. Jiang,¹ Z. H. Yang,³ J. Feng,¹ P. J. Li,¹ J. Chen,¹ Q. Liu,¹ H. L. Zang,¹ B. Yang,¹ Y. Zhang,¹ Z. Q. Chen,¹ Y. Liu,¹ X. H. Sun,¹ J. Ma,¹ H. M. Jia,² X. X. Xu,² L. Yang,² N. R. Ma,² and L. J. Sun²

¹School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China ²China Institute of Atomic Energy Beijing, 102413, China selected reaction (5 AMeV beam; 185 ug/cm² target) :

contamination in Q-value:

Experiment setup at CIAE

Detector	Segmen- tation		Thickne ss (μm)	e Coveri g angl (degre	n e e)	Purpose
Telescop e U0&D0	U0&D0 are symme- trical			13-33	}	10Beα from 14C Alpha(14C)
DSSD	16 x 16		64			ΔE
DSSD	32x32		500			E
SSD			1500			E(4He)
Telescop e U1&D1	U0&D are symm trica	U0&D0 are symme- trical		48-72	2	Alpha(14C)
DSSD	16*10	16*16				ΔE
SSD			1500			E
Telescop e U2&D2	symmetric al			97-12	1	Alpha(14C)
DSSD	16		20			ΔΕ
SSD	SSD		1500			E
Beam ⁹ B		e	45MeV		~7enA	
Та	raet	⁹ B	е	0.9um		

Obtained *Q***-value** spectra

FIG. 1: Q-value spectrum from present experiment for different data sets with: (a) identified ¹⁰Be and identified α in U0/D0 telescopes; (b) identified ¹⁰Be and unidentified α ; (c) identified α and unidentified ¹⁰Be. Spectrum (d) comes from previous ⁷Li(⁹Be, α^{10} Be)²H experiment [11].

Comparison of IM spectra for various ¹⁰**Be states**

This work				$^{7}\mathrm{Li}(^{9}\mathrm{Be},\alpha^{10})$	$^{0}\text{Be})\alpha[11]$ $^{14}\text{C}(^{14}\text{C},\alpha^{10}\text{Be})^{1}$			$(5e)^{14}C[12]$
$^{10}\mathrm{Be}_{\mathrm{gs}}$	$^{10}\text{Be}(2^+)$	$^{10}\text{Be}(\sim 6 \text{ MeV})$	$^{10}\mathrm{Be}_\mathrm{gs}$	$^{10}\text{Be}(2^+)$	$^{10}\mathrm{Be}(\sim 6~\mathrm{MeV})$	$^{10}\mathrm{Be}_\mathrm{gs}$	$^{10}\text{Be}(2^+)$	$^{10}\mathrm{Be}(\sim 6~\mathrm{MeV})$
16.5(1)			16.4(1)			16.4(1)		
						17.3(1)	17.3(1)	
17.9(1)						[18.1]		
18.8(1)			18.5(1)	18.5(1)		18.6	18.4(1)	
				[19.1(1)]			[19.0(2)]	
19.8(1)	19.8(1)		19.8(1)				19.8(1)	
	20.3(1)							20.4(1)
20.8(1)	20.8		20.6(1)					20.9(1)
$[21.4]^{\acute{a}}$	21.4(1)	21.6(3)		21.4(1)			[21.6(2)]	
$[22.0]^{a}$	22.0(1)	22.0(3)						[21.9(1)]
$[22.5]^{a}$	22.5(1)	22.5(3)			22.4(3)			[22.5(1)]
		23.1(3)		[23.2(1)]				[23.1(2)]
	23.5(1)	23.6(3)						
$[24.0]^{a}$	[24.0(1)]	[24.0(3)]			24.0(3)			
$[24.7]^a$	[24.7(1)]	[24.7(3)]			~ /			

TABLE I: Summary of the excited states populated in ¹⁴C and decaying to α -cluster and ¹⁰Be in its ground, 2⁺ and ~6 MeV states. Those in square brackets represents tentative identifications.

^aThese states were assigned by comparison with neighbouring decay path.

FIG. 3. ¹⁴C \rightarrow ¹⁰Be + α relative branching ratio for 21.4- and 22.5-MeV resonances in ¹⁴C with respect to three sets of final states in ¹⁰Be obtained from the present measurement. Results of the 21.4-MeV state taken from the previous two-neutron transfer experiment [14] are also plotted for comparison. The error bars are statistical only.

FIG. 4. Comparison of the relative decay branching ratio obtained from the present experiment with the theoretical prediction [10].

¹⁴C: triangle, and π -bond or σ -bond linear-chain states

T. Baba and M. Kimura, PRC95(2017)064318

¹⁴C: band-head of the π -bond linear-chain state

Chinese Physics C Vol. 42, No. 7 (2018) 074003

Investigation of the near-threshold cluster resonance in ${}^{14}C^*$

Hong-Liang Zang(臧宏亮)¹ Yan-Lin Ye(叶沿林)^{1;1)} Zhi-Huan Li(李智焕)¹ Jian-Song Wang(王建松)² Jian-Ling Lou(楼建玲)¹ Qi-Te Li(李奇特)¹ Yu-Cheng Ge(葛愉成)¹ Xiao-Fei Yang(杨晓菲)¹ Jing Li(李晶)³ Wei Jiang(蒋伟)⁴ Jun Feng(冯俊)¹ Qiang Liu(刘强)¹ Biao Yang(杨彪)¹ Zhi-Qiang Chen(陈志强)¹ Yang Liu(刘洋)¹ 志强, 注晨光)¹ Chun-Gual Han-Zhou Yu(余翰舟)¹ Jun-I Yan-Yun Yang(杨彦云)² Shi-Key Laboratory of Nuclear Pr 200 Chen-Guang Li(李晨光)¹ Chun-Guang Wang Q₉₉₉ Jian Gao(高见)^{1,5} Han-Zhou Yu(余翰舟)¹ Jun-I ≥¹⁵⁰ ¹ School of Physics and State Key Laboratory of Nuclear Ph Τ, 0 -15 -25 -10-20-5 PPAC3 Q (MeV) PPAC2 O PPAC1 Fig. 2. (color online) Q-value spectrum for the ^{14}C Target(CH,) \rightarrow ¹⁰Be + α breakup reaction on a proton target, obtained from the present measurement. The Q_{ggg} peak is related to the final particles all in their g.s.. The other two peaks correspond to the exit ¹⁰Be in its first excited state (3.36 MeV) and Fig. 1. (color online) A schematic view of the experimental setup. its four adjoining excited states around 6 MeV.

A state at 14.1(1) MeV is clearly identified, being consistent with the predicted band-head of the molecular rotational band characterized by the π -bond linear chain configuration.

a variation of the $\theta_{\alpha}^2/\Gamma_t$ value by a factor of 50%. In other words, current relative yields analysis, taking into account the Coulomb barrier penetrability, tends to constrain the spin of the 14.1 MeV resonance at low values of $0 \rightarrow 2$, being consistent with the expectation of a 0^+ band-head at around 14 MeV for the π -bond linear-chain configuration in ¹⁴C. $\frac{N_{exp}(14.1)}{N_{exp}(15.6)} = \frac{\theta_{\alpha}^2(14.1)\Gamma_t(15.6)}{\theta_{\alpha}^2(15.6)\Gamma_t(14.1)} \cdot \frac{(2J_x+1)P_{J_x}(14.1)}{7P_3(15.6)}$

¹⁴C: triangle, and π -bond or σ -bond linear-chain states

T. Baba and M. Kimura, PRC95(2017)064318

¹⁶C: Latest RIBLL1 experiment

Primary Beam Intensity:

- > 2018/04/02 2018/04/06: < 30*3.51enA = 105enA
- > 2018/04/06 2018/04/09: $(30~50)*3.51enA \approx (100~180)enA$
- > 2018/04/09 2018/04/14: $(50 \sim 120) \times 3.51 \text{ en} A \approx (180 \sim 400) \text{ en} A$

I. Some background

II. Studies on ¹⁴⁻¹⁶C

III. Some perspectives

Open problems for clustering in light nuclei

- O_3^+ and O_4^+ in ${}^{10}Be$;
- ¹²Be systematics (⁶He+⁶He?);
- broad O_3^+ state in ${}^{12}C$;
- chain states in ${}^{14}C$ and ${}^{16}C$;
- a condensation state in ¹⁶O, ²⁴Mg...;
- molecular bands in ¹⁸⁻²⁸O;
- cluster + GR;
- 2n, 4n correlations;

Future: high excitation could easily be achieved in medium mass region via fission

Application of new technique — very thin DSSD

Nuclear Inst. and Methods in Physics Research, A 897 (2018) 100-105

Investigation of the thickness non-uniformity of the very thin silicon-strip detectors

Qiang Liu^a, Yanlin Ye^{a,*}, Zhihuan Li^a, Chengjian Lin^b, Huiming Jia^b, Yucheng Ge^a, Qite Li^a, Jianling Lou^a, Xiaofei Yang^a, Biao Yang^a, Jun Feng^a, Hongliang Zang^a, Zhiqiang Chen^a, Yang 1 25 30 Lei Ya RT. 25 20 LT, AE thickness (um) AE thickness (um) 25 30 a School of 25 20 20 ^b China In 15 20 15 15 15 10 10 10 10 ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁰ ⁵ ⁰ ⁰ 5 ³⁰ 25 20 15 10 *strip* nume 5 0 0 5 10 15 20 25 30 *strip* number 5 10 15 20 25 30 5 Y strip number Y strip number x strip number X strip number 0 0 (a) (b) 25 60 RT₂ 20 AE thickness (um) 25 AE thickness (um) 60 20 50 15 50 15 40 10 40 10 5 30 20¹ ³⁰2⁵20¹⁵10⁵0⁰ 30 30 25 20 15 10 5 0 0 5 5 10 15 20 25 30 25 30 5 10 15 20 Y strip number Y strip number X strip number X strip number 0 20

(d)

(c)

NUCL SCI TECH (2018)29:97 https://doi.org/10.1007/s41365-018-0437-6

Performance of a small AT-TPC prototype

Jin-Yan Xu¹ · Qi-Te Li¹ · Yan-Lin Ye¹ · Jian Gao¹ · Jia-Xing Han¹ · Shi-Wei Bai¹ · Ka-Hou Ng¹

Close theory & experiment cooperation

2014.12. Nanjing U 2015.08. Hokkaido U & Osaka-RCNP

2016.11. Yokohama

2015.08. 2016.07. PKU

2017.11. Hokkaido U 2018.11. Sichuan U

Typical experimental collaborators

Z. H. Yang (杨再宏),¹ Y. L. Ye (叶沿林),^{1,*} Z. H. Li (李智焕),¹ J. L. Lou (楼建玲),¹ J. S. Wang (王建松),²
D. X. Jiang (江栋兴),¹ Y. C. Ge (葛愉成),¹ Q. T. Li (李奇特),¹ H. Hua (华辉),¹ X. Q. Li (李湘庆),¹ F. R. Xu (许甫荣),¹
J. C. Pei (裴俊琛),¹ R. Qiao (乔锐),¹ H. B. You (游海波),¹ H. Wang (王赫),^{1,3} Z. Y. Tian (田正阳),¹ K. A. Li (李阔昂),¹
Y. L. Sun (孙叶磊),¹ H. N. Liu (刘红娜),^{1,3} J. Chen (陈洁),¹ J. Wu (吴锦),^{1,3} J. Li (李晶),¹ W. Jiang (蒋伟),¹
C. Wen (文超),^{1,3} B. Yang (杨彪),¹ Y. Y. Yang (杨彦云),² P. Ma (马朋),² J. B. Ma (马军兵),² S. L. Jin (金仕纶),²
J. L. Han (韩建龙),² and J. Lee (李暁菁)³

²Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (Received 10 December 2013; published 22 April 2014)

Jun Feng¹, YanLin Ye^{1*}, Biao Yang¹, ChengJian Lin², HuiMin Jia², DanYang Pang^{3,4}, ZhiHuan Li¹, JianLing Lou¹, QiTe Li¹, XiaoFei Yang¹, Jing Li¹, HongLiang Zang¹, Qiang Liu¹, Wei Jiang¹, ChenGuang Li¹, Yang Liu¹, ZhiQiang Chen¹, HongYi Wu¹, ChunGuang Wang¹, Wei Liu¹, Xiang Wang¹, JingJing Li¹, DiWen Luo¹, Ying Jiang¹, ShiWei Bai¹, JinYan Xu¹, NanRu Ma², LiJie Sun², and DongXi Wang²

¹School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; ²China Institute of Atomic Energy, Beijing 102413, China; ³School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China; ⁴Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

