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Introduction

® In this talk I will consider the well-known experimental data of the
charge distribution of the proton 3s, ,, orbit given by the charge density
difference, Ap. (1), between charge density distributions of the isotones
206Ph — 20°T], determined by analysis of elastic electron scattering.

® The shell model, which is based on the assumption that nucleons in the
atomic nucleus move independently in single particle orbits associated
with a single particle potential, has been very successtul in explaining

many features of nuclei.

® [ will present a novel method, using the single particle Schrodinger
equation with eigen-energy E, to determine the central potential V(r)
directly from the measured single particle matter density, p(7) and its
first and second derivatives, assuming known for all T. Using the

method we obtained the potential for the proton 3s, ,,




Introduction

® The resulting potential can also be used as an additional
experimental constraint in determining a modern energy density
functional (EDF) for more reliable prediction of properties of

nuclei and nuclear matter.

® We have carried out calculations of the effects of short-range
correlations on the charge density difference *°°Pb — *°T1, 3s, ,,
state, using the Jastrow correlation method. We derive and use a
simple approximation for determining the effect of short range

correlations on the charge density distribution.

® (Goal: Find out how short range correlations affect the Charge
density distribution and whether it is necessary to help explain the

experimental data on the Charge density of 3s, ,, orbit
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Charge distributions of 2°®Pb, 2°°Pb, and ?°*T1 have been calculated within the Hartree-Fock and
Hartree-Fock + BCS approximations with the Skyrme interaction. Using the force SkM™. designed
without any reference to this particular problem, we find good agreement with elastic electron
scattering data. The role of pairing correlations beyond the mean field is studied by applying the
Lipkin-Nogami method of variation after approximate projection on the good number of particles.
We argue in this paper that, in our opinion, there is no significant discrepancy between the experi-
mental data and the Hartree-Fock calculations using reasonable effective interactions. In particu-
lar, we do not see any compelling need for a large depletion of the occupation number of the proton
3s,,, orbital.




Single Particle Potential: Formalism

2
Single-particle Schrodinger Eq. _ h_ AV + VY = FY
2m
N h? oo o AP(P)
V(r)—E+2mS(r), S(r) = o)

If we know single-particle W.F. we can determine V(r)

Nonsingular V: A¥Y(r) = 0 when () =0

Experimentally, one measures density: p(f") — [QU(F)] 2
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We consider the 3s1/2 proton orbit. No S.O. and 1=0

Therefore, using the relation:

Ry (r) = 4mr?py (1)

2 2
S(’I‘) _ d pnlj n zdpnlj . 1 dpnlj
20pi| dr® v dr  2pp;\ dr
When py;; = 0:
dpnlj:O nd dzpnlj n denlj 1 (dpnlj)zzo

dr dr? r dr 2pn1j
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NOTE Experiment determines charge distribution;

Theory determines point distribution

pen () = jpp () ppfs(? — r')d3r'

Free proton Charge Distribution Ppfs (7‘2) — e~ T/a

8mas

a’ = 1—12 IffS with 7y, r5 = 0.85 fm (rms radius of Ppfs)
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Define Fourier transform of density:
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We get the point proton density:
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Measured charge density difference
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Due to large uncertainty in the experimental data for

Apc(r) = pen(r; 2%°Pb) —pcp (1 2T

particularly, around the nodes of the 3s1/2 proton
wavefunction, we are not able to extract the corresponding

potential with reasonable accuracy.

We have therefore determined potentials by fits

to the experimental data.
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Calculation of Short Range correlation effect on 3s1/2 density

® We use the Jastrow many-body correlated wave function
with a repulsive two-body correlation factor f;, and

harmonic oscillator single particle wave functions

® We derive a simple and accurate (within a few percents)
approximation for the effect of the two—body correlation
factor f;, on matter density and calculate the effect of short

range correlations on charge density distributions of 206Pb

and 205TI




The Shell Model and the Jastrow Correlated
many-body wave functions
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Shell Model single particle density

p*M (@) = (Ysm|PlYsum)
= [ WGP WGl Y| 8 — 7o) diy -

A
- wa(ﬁ-)lz

PfM(F) = |¢, (M?




Correlated single particle density
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Two-body Correlation function
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3s12 Proton Point Density
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3s12 Proton Charge Density
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Conclusions

® We have developed and used a new method of determining the
single particle potential directly from the density distribution
and applied it to the experimentally determined density
distributions of the proton 3s, ,, state in 206ph and obtaining
an acceptable form for the potential.

® We carried out a least—squares fit of a potential providing a fit to
the density data which is a much better fit than the conventional
Woods-Saxon potential especially nearr = 0 fm

© Clearly more accurate data is needed to better determine the
potential and answer the question how well can the data be
reproduced by a calculated 38,5 single particle wave function




Conclusions-Cont.

® We have calculated the effect of short-range correlations on
charge densities of 206Pb and 205T1I, using the Jastrow
correlated many-body wave function with a repulsive two-
body short range correlation function.

® We demonstrated that, although correlated 3s, ,, charge
density at r=0 is reduced by about 30%, the calculated
density disagrees with the experimental data by more than a
factor of 2, particularly in the region of r = 2 — 4 fm.

® Further investigations are needed using a more realistic two-
body correlation function and determining the effect of short
range correlations and the corresponding single particle
potential.
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