

Progress of TMSR in China

Sept. 27, 2018. Shanghai

Hongjie XU

TMSR Center of CAS/ SINAP

OUTLINE

MSR & Thorium

Progress of TMSR

Perspective on TMSR

OUTLINE

MSR & Thorium

Progress of TMSR Perspective on TMSR

Overview of the Generation IV Systems

System	Neutron Spectrum	Fuel Cycle	Size (MWe)	Applications	R&D Needed
Very-High- Temperature Reactor (VHTR)	Thermal	Open	250	Electricity, Hydrogen, Process Heat	Fuels, Materials, H ₂ production
Supercritical-Water Reactor (SCWR)	Thermal, Fast	Open, Closed	1500	Electricity	Materials, Thermal- hydraulics
Gas-Cooled Fast Reactor (GFR)	Fast	Closed	200-1200	Electricity, Hydrogen, Actinide Management	Fuels, Materials, Thermal-hydraulics
Lead-Cooled Fast Reactor (LFR)	Fast	Closed	50-150 300-600 1200	Electricity, Hydrogen Production	Fuels, Materials
Sodium Cooled Fast Reactor (SFR)	Fast	Closed	300-1500	Electricity, Actinide Management	Advanced recycle options, Fuels
Molten Salt Reactor (MSR)	Epithermal	Closed	1000	Electricity, Hydrogen Production, Actinide Management	Fuel treatment, Materials, Reliability

Molten Salt Reactor (MSR)

Fuel pin for Pressurized Water Reactor (PWR)

Th232/U233 and U238/Pu239 fuel cycles

Mean released neutron number per fission η $\eta = 2$ is the required condition for a sustain reactor

OUTLINE

MSR & Thorium

Progress of TMSR

Perspective on TMSR

OUTLINE

What is TMSR

Motivation for TMSR

Progress of TMSR

Perspective on TMSR

TMSR Project (Chinese Academy of Sciences)

- 中文名称: 钍基熔盐堆核能系统
- 英文名称: Thorium Molten Salt Reactor

Nuclear Energy System

- Abbr. : TMSR
- Aims : Develop Th-Energy, Non-electric application of Nuclear Energy based on TMSR during coming 20-30 years.

Long Term Strategy

Optimized for high-temperature based hybrid nuclear energy application.

Doptimized for utilization of Th with Pyroprocessing.

Roadmap of Technologies R&D

Material	Don f	nestic original foundation		Domestic level after TMSR program implementation	Μ	ajor breakthrough (World first class of the same kind)
Hastelloy N alloy (Nickel based)	 Prop 6 tor (nic) Proc blan 	perty data is blank ns level of cast ingot kel based) cessing technology is hk		The properties meet the service requirement of Molten Salt Reactor The specification meets the size requirement The technology meets the construction requirements	AAA	High temperature performance test accumulates to 300,000 hours 12 ton level of ingot casting, 8 tons level of wide sheet, Large size seamless tube Main vessel near molding technology, welding technology
Stainless Steel	 Mat conv Not temp corre No a expect 	ture technology in ventional field resistant to high perature molten salt cosion application erience for MSR	A A	Solved molten salt corrosion problem Reduced cost based on safety	AAA	Bimetal composite board technology Overlaying technology for Main vessel Welding technology for composite board
Nuclear graphite	 No s for r Proc are b 	specialized graphite molten salt reactor cessing /properties blank	AAA	The properties meet the service requirement of Molten Salt Reactor The specifications and dimensions meet the requirements of the internal components The first nuclear grade graphite for molten salt reactor	AAA	Anti-melting salt infiltrated fine granular graphite Key data of high temperature molten salt compatibility Large scale up to 350×600×1400 mm
Molten salt	 Nitr Fluc salt 	rate salt 560°C oride salt/chloride technology is blank		Fluoride salt/chloride salt 700°C The properties meet the service requirement of Molten Salt Reactor The impurity content of molten salt is less than the design requirement Provide products for international peers	AAAA	High purity molten salt preparation technology High purity molten salt corrosion control technology International largest scale reactor fluoride salt production equipment Production capacity of fluoride salt reaches 10 tons per year

□ Developed an Integrated molten salt corrosion control technology including alloy composition optimization, surface treatment, molten salt purification and potential-modulated.

□ Solved the strong corrosive problem of molten salt in application of MSR , thermal and energy storage.

- Design optimization: Optimized alloy composition, Reduced Cr diffusion
- Surface treatment: FTD surface modification, Improve corrosion resistance
- Molten salt purification: Preparation of high purity fluorine salt, impurity content control
- Potential-modulated: Add inhibiting elements, Electrochemical control of corrosion

Key Equipments for TMSR

Eq	uipment	Application	Domestic original foundation	TMSR researched progress and results
Spec	High temperature molten-salt pump	Driving Molten Salt flow at high temperature	Chemical molten-salt pump (< 500 °C)	 Finished the development of molten-salt pump (10 m³/h, 650 °C) Finished the design of reactor pump (300 m³/h, 700 °C), being processed The engineering sample pump test bench is being built
ial and key	Molten salt heat exchangers	Heat Transfer	No	 Finished a series of molten salt air heat exchangers for experimental circuits Finished the design of molten salt molten salt heat exchanger for simulation reactor, being processed
equipmen	Molten salt valve	Safety protection Flow regulation	No	 Finished molten salt refrigeration valve for experimental circuit Built cryogenic valve experimental platform Finished designs of the mechanical molten salt valve for the simulation reactor
ts for MSR	Storage tank, vessels	Reactor vessels etc.	Low temperature molten salt	 Mastered the design and processing technology and built a 1m³ storage tank Designed main vessel (700 °C, 4m) of simulation reactor is being processed
	Helium turbine	Power generation	No	• SARI-CAS built a comprehensive test device for MW helium gas turbines for MSR
Molten instrum	Molten salt flowmeter	Molten salt flow measurement	< 400 °C	 Successfully developed an ultrasonic flowmeter with a working temperature of up to 700 °C, a high temperature molten salt flowmeter calibration platform has been built Used in molten salt loop and simulation reactor at 650 °C high temperature
salt ents	Molten salt manometer	Molten salt pressure measurement	No	• The prototype of the Na-K type molten salt pressures to gauge is successfully developed, and its accuracy can reach 200 Pa at 650 °C

Fundamental Research Base at Jiading

Super Computer

Hot Cells

Material Testing Labs

Salt Properties Labs

 $\boldsymbol{\beta}$ Irradiation Facility

Team & Collaboration

International and Domestic Collaborations

TEAMS: Staffs ~ 600; Graduate students ~ 200

New Candidate Site of TMSR test reactor

 The candidate site is located in Wuwei (武威), Gansu Province, about 2000 Km from Shanghai, the annual precipitation is 128 mm and the annual average temperature is 8.3 °C.

Survey of the Candidate Site

- Onsite survey completed in August
- Application for the site permit to be submitted to government this year.

Home / Information Library / Current and Future Generation / Molten Salt Reactors

Molten Salt Reactors

(Updated July 2018)

- Molten salt reactors operated in the 1960s.
- They are seen as a promising technology today principally as a thorium fuel cycle prospect or for using spent LWR fuel.
- A variety of designs is being developed, some as fast neutron types.
- · Global research is currently led by China.
- Some have solid fuel similar to HTR fuel, others have fuel dissolved in the molten salt coolant.

http://www.world-nuclear.org/information-library/current-and-future-generation/molten-salt-reactors.aspx

ANES have Great Potential for Development in China

The dream of American scientists at Oak Ridge, a half-century ago, is taking shape here, thousands of miles away.

Energy

Fail-Safe Nuclear Power

Cheaper and cleaner nuclear plants could finally become reality—but not in the United States, where the technology was invented more than 50 years ago.

by Richard Martin August 2, 2016

OUTLINE

MSR & Thorium

Progress of TMSR

Perspective on TMSR

Chinese Proposal for TMSR Roadmap

- Base on the technologies have had in Lab-scale during last a few years.,TMSR team propose the roadmap as following:
- To complete the construction of test reactor TMSR-LF1 by 2020
- To complete the construction of TMSR-LF-150 demofacility by 2030.
- To complete the construct of TMSR fuel salt batch pyroprocess demo-facility, and to realize Th-U Fuel Cycle usage by the early 2040s.

3D Graph of Engineering Design

Main Parameters

Reator type	Liquid-fueled molten salt reactor
Power	2 MW
Life	10 years
EFPD	300 days
Max EFPD / year	60 days
Inlet/outlet Temperature (fuel salt loop)	630°C / 650°C
Inlet/outlet Temperature (coolant salt loop)	560°C / 580°C
Fuel salt	LiF-BeF ₂ -ZrF ₄ -UF ₄ (+ThF ₄)
U-235 Enrichment	19.75wt%
Coolant salt	LiF-BeF ₂

Fuel Loading / discharging	Ar gas + capsule
Reactivity Control	Control rods
Mass flow rate (fuel salt)	~50 kg/s
Mass flow rate (coolant salt)	~42 kg/s
Residual heat removal	<pre>1. Loop 2. Air natural circulation Passive residual heat removal system</pre>
Alloy	UNS N1003
Graphite	Superfine particle graphite
Cover gas	Argon, 0.05 MPa

TMSR-LF150 TMSR-LF Small Modular Demo-Reactor

- Key modules: power、heat transfer、fueling draining、 Passive residual heat remova on-line refueling
- Application modules: generator、hydrogen production、Changed、etc. (Changed with goals)

Power	150MWt
Temperature	600 ℃ / 700 ℃
Efficiency	40%-50%
Th power	>=20%
Main vessel	5.2m×6.0m (D×H)
Safety	Passive residual heat removal system
Economics	Cheaper than coal

Key-points of TMSR-LF150-II

Core design

Hexagonal Graphite Block: low radiation stress, fluid in gaps can easy flow.

Materials irridation: 1) Long Graphite irradiation life, ~10 year; 2) Composite material for control rod tube; 3) Reflector to slow-down fast flux, and neutron absorbed shielding for protecting main vessel.

Fuel cycle

- Baseline fuel cycle type: Th+U
- Keep option for various application (*liquid fuel is more easy restructuring*): U, TRU, TRU+Th, ect.
- Batched reprocessing (off-line): easily deployment at present, benefit for burnup and temperature reactivity coefficient, etc.

Fuel type	Features
Th+U	Th application High equivalent burnup
U	High temperature heat application
TRU	Burn TRUs
TRU+Th	Burn TRUs + produce U233

Passive Residual Heat Removal System

Assure safety as final heat sink in accidents

Passive : heat radiation, heat conduction, natural circulation Will be verified on TMSR-LF1. RCCS system is also used in HTR

TMSR-LF1

Heat transfer and storage

- Primary loop is fuel salt loop with one pump and three HX. Well contained.
- Secondary loop is a radioactivity separated loop.
- Heat storage system with chorlide salt (or nitrates) is used to improve load factor and actual max deliver power: MSR can operate at full power in full-time, and heat storage system can deliver variable power following demand of net, wind energy and solar energy.

Facility for dry process of Th-U fuel cycle

Goal	Large scale Th utilization
Technologies	Fluorination, Electroysis, Distillation
Capability	5m3/batch,20m3/year
Efficiency	U>95%; Th>85%
Waste	10 times lower than current technologies

Batch pyroprocess Facility

Wind Thermal Power System

1. Intermittent Input

TMSR Innovative Hybrid-energy Park

Clean Energy System

Nuclear energy system produces heat and/or electricity; renewable energy system produces electricity and/or heat; both of them can produce hydrogen for energy conversion and storage, which is also used for lower the CO_2 emission of fossil fuel.

