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                     Our theme:




“Simplicity, symmetry, and beauty… 
                          … in atomic nuclei” 
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Nuclear spectra often  
show remarkable simplicity 
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Nuclear spectra often  
show remarkable simplicity 
 
These simplicities are beautifully 
modeled by the interacting boson model 
 
Each corner represents an 
exact symmetry group 
(each are subgroups of U(6)) 

”Casten triangle” 
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renormalization group: 
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transformations back 
to dynamical symmetry 
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This talk has its own triangle: 

Decomposing shell model  
wave functions by group irreps 
-> quasi-dynamical symmetries 

SRG: the similarity  
renormalization group: 
-> unitary 
transformations back 
to dynamical symmetry 

Spectral distribution 
theory, a metric on 
the space of Hamiltonians 
-> a new way to look at SRG 
and a new SRG 
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While the interacting boson model and  
similar beautiful and simple models 
can describe a lot of nuclear data 
 
 
today we have moved away from  
thinking… 
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While the interacting boson model and  
similar beautiful and simple models 
can describe a lot of nuclear data 
 
 
today we have moved away from  
thinking… 

…to supercomputing! 
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FOR EXAMPLE….

11	  

€ 

ˆ H Ψ = E Ψ

 we use the matrix formalism 

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα

 
In configuration-interaction method 

(a.k.a. shell model diagonalization): 

Maria Mayer 
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α
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€ 

Hαβcβ
β

∑ = Ecα

 
In configuration-interaction method 

(a.k.a. shell model diagonalization): 

Maria Mayer 
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 6Li, Nmax=22, 25 billion basis states   
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FOR EXAMPLE….

13	  

€ 

ˆ H Ψ = E Ψ

 we use the matrix formalism 

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα

 
In configuration-interaction method 

(a.k.a. shell model diagonalization): 

Maria Mayer 

Largest (?) known M-scheme calculation 
 6Li, Nmax=22, 25 billion basis states   
(Forssen et al, arXiv:1712.09951 with pANTOINE) 

“The purpose of computing is  
  insight, not numbers” 

--Richard Hamming 
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FOR EXAMPLE….

14	  

 we use the matrix formalism 

€ 

Ψ = cα α
α

∑

 
In configuration-interaction method 

(a.k.a. shell model diagonalization): 

Maria Mayer 

Largest (?) known M-scheme calculation 
 6Li, Nmax=22, 25 billion basis states   
(Forssen et al, arXiv:1712.09951 with pANTOINE) 

That’s a lot of numbers!  
How can we understand them? 

We can use group theory! 
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Decomposing shell model  
wave functions by group irreps 
-> quasi-dynamical symmetries 
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Specifically, we use eigenvalues 
of Casimir operators to label 

subspaces (“irreps”) 
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!!Ĉ z ,α = z z ,α
Casimir 

In particular, if the Casimir(s) commute(s) 
with the Hamiltonian,  
 
then the Hamiltonian is block-diagonal 
in the irreps (irreducible representation*) 
 
 

!! Ĥ ,Ĉ
⎡⎣ ⎤⎦ =0
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!!Ĉ z ,α = z z ,α
Casimir 

In particular, if the Casimir(s) commute(s) 
with the Hamiltonian,  
 
 
This is known as dynamical symmetry 
 

!! Ĥ ,Ĉ
⎡⎣ ⎤⎦ =0
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!!Ĉ z ,α = z z ,α
Casimir 

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define 
the fraction of the wavefunction in an irrep 
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!!Ĉ z ,α = z z ,α
Casimir 

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define 
the fraction of the wavefunction in an irrep 

For 2-body SU(3) Casimir,

eigenvalue z = 


λ2+λμ+μ2+3(λ+μ),

where λ, μ label the irreps
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Backbending in 48Cr 
(using GXPF1) 

R. Herrera and CWJ,  
Phys. Rev. C 95, 024303 (2017)  
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Backbending in 48Cr 
(using GXPF1) 

R. Herrera and CWJ,  
Phys. Rev. C 95, 024303 (2017)  

Wave functions computed in interacting 
shell model* using GXPF1 interaction;

then SU(3) 2-body Casimir read in and 

decomposition done with Lanczos


*BIGSTICK shell model code:  github/cwjsdsu/BigstickPublick 
CWJ, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761-2774 (2013) 
CWJ, Ormand, McElvain, and Shan arXiv:1801:08432   
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David Rowe 

Clearly dynamical symmetry 
doesn’t work here, but we 
do have “quasi-dynamical  

symmetry” 
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What about  
other groups? 

Eugene Wigner 
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What about non- 
rotational nuclei? 

Eugene Wigner 
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David Rowe 

Even more “quasi-
dynamical  
symmetry”! 
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Is there some way to turn a 
quasi-dynamical symmetry 
into a dynamical symmetry?


Like a unitary 
transformation?
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Decomposing shell model  
wave functions by group irreps 
-> quasi-dynamical symmetries 

SRG: the similarity  
renormalization group: 
-> unitary 
transformations back 
to dynamical symmetry 



Adventures in Quasi-dynamical Symmetries 

Simplicity, Symmetry, and Beauty in Nuclei/ Shanghai /  Sept 2018 

Is there some way to turn a 
quasi-dynamical symmetry 
into a dynamical symmetry?


Like a unitary 
transformation?


Sure! Why not use 

the similarity 

renormalization 
group (SRG)?
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The similarity 
renormalization group 
(SRG) is widely used in

ab initio calculations


to transform and soften

the nuclear force
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The similarity 
renormalization group 
(SRG) is widely used in

ab initio calculations


to transform and soften

the nuclear force


!!H(s)=U(s)H(0)U
†(s)

U(s)= eη 

!!
dH(s)
ds

= η ,H(s)⎡⎣ ⎤⎦
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The similarity 
renormalization group 
(SRG) is widely used in

ab initio calculations


to transform and soften

the nuclear force


Typically, η = [G,H]  
where G is the generator . 
SRG drives H(s) to be “more like” G. 
(More on this soon). 

!!H(s)=U(s)H(0)U
†(s)

U(s)= eη 

!!
dH(s)
ds

= η ,H(s)⎡⎣ ⎤⎦
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The similarity 
renormalization group 
(SRG) is widely used in

ab initio calculations


to transform and soften

the nuclear force


Typically, η = [G,H]  
where G is the generator . 
SRG drives H(s) to be “more like” G. 
(More on this soon). 
 
A common choice is the kinetic energy, 
but I’ll use the SU(3) Casimir operator 

!!H(s)=U(s)H(0)U
†(s)

U(s)= eη 

!!
dH(s)
ds

= η ,H(s)⎡⎣ ⎤⎦
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USDB interaction 
 
dimension = 640 
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Now I will apply SRG

G = SU(3) Casimir operator 
 
Calculations done on the  
many-body matrix directly 
 
 
I transform H and diagonalize,  
but decompose using  
the untransformed Casimir. 

!!
dH(s)
ds

= G ,H(s)⎡⎣ ⎤⎦ ,H(s)⎡⎣ ⎤⎦
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What’s going on?

Why does the 22 state 


shift irreps?
 Increasing 
evolution 
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Decomposing shell model  
wave functions by group irreps 
-> quasi-dynamical symmetries 

SRG: the similarity  
renormalization group: 
-> unitary 
transformations back 
to dynamical symmetry 

Spectral distribution 
theory, a metric on 
the space of Hamiltonians 
-> a new way to look at SRG 
and a new SRG 



Adventures in Quasi-dynamical Symmetries 

Simplicity, Symmetry, and Beauty in Nuclei/ Shanghai /  Sept 2018 

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

100 200 300

SU(3) Casimir eigenvalue

0.2
0.4
0.6
0.8

fra
ct

io
n 

in
 ir

re
p

100 200 300

01 22
s=0

s=0.5

s=1.0

s=2.0

20Ne 
 
USDB interaction 

What’s going on?

Why does the 22 state 


shift irreps?


It’s because of SRG!
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It’s because of SRG!


It turns out one can  
re-derive SRG using 
spectral distribution theory 
(French, Ratcliffe, Wong, 
Draayer, many others) 
 
One can define an inner product 
on matrices/Hamiltonian using traces: 
 
(A,B) = tr AB* 
 
 
*well, there are some subtleties that are not important here   
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It’s because of SRG!


Suppose we want to  
transform H(s) 
 
so as to increase  
 
tr (H(s) G) 
 
(i.e., to make H more “parallel” to G) 

!!H(s)=U(s)H(0)U
†(s)
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It’s because of SRG!


Suppose we want to  
transform H(s) 
 
so as to increase  
 
tr (H(s) G) 
 
(i.e., to make H more “parallel” to G) 
 
maximizing the derivative  
 

leads to standard SRG 

!!H(s)=U(s)H(0)U
†(s)

!!
d
ds
tr GH(S)( )

!!
dH(s)
ds

= G ,H(s)⎡⎣ ⎤⎦ ,H(s)⎡⎣ ⎤⎦
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Suppose we want to  
transform H(s) 
 
so as to increase  
 
tr (H(s) G) 
 
(i.e., to make H more “parallel” to G) 
 
maximizing the derivative  
 

leads to standard SRG 

!!H(s)=U(s)H(0)U
†(s)

!!
d
ds
tr GH(S)( )

!!
dH(s)
ds

= G ,H(s)⎡⎣ ⎤⎦ ,H(s)⎡⎣ ⎤⎦

But this drives low-lying 
wave functions into the  
highest-weight irrep!

(extremal -> extremal)
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Suppose instead we want to  
transform H(s) 
 
so as to decrease  tr [H(s),G]2  
 
(i.e., to make H  “commute more” with G) 
 
so maximizing the derivative - 𝑑/𝑑𝑠 𝑡𝑟  [𝐻(𝑠),𝐺]2 
leads to  “new” SRG: 
 

!!H(s)=U(s)H(0)U
†(s)

!!
− d
ds
tr G ,H(s)⎡⎣ ⎤⎦

2

!!
dH
ds

= G ,H⎡⎣ ⎤⎦ ,G⎡⎣ ⎤⎦ ,H⎡
⎣

⎤
⎦ ,H

⎡
⎣

⎤
⎦
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In other words, this ‘new SRG’ 
mostly drives the wave function 

into the dominant irrep! 




Adventures in Quasi-dynamical Symmetries 

Simplicity, Symmetry, and Beauty in Nuclei/ Shanghai /  Sept 2018 68	  

Summary: 
 
*Group theory allows us to peer into the structure of  
complicated wave functions 
 
* Dynamical symmetry (dominance by a single irrep) 
is rare, but quasi-dynamical symmetry is ubiquitous.  
 
•  We can construct a unitary transformation from 
quasi-dynamical symmetry to dynamical symmetry, 
using the similarity renormalization group (SRG). 
 
•  Standard SRG pushes wave functions towards  
irreps with extremal Casimir eigenvalues, but I can  
formulate a new SRG that fixes this problem! 
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Future work: 
 
•  Transitions!  How do B(E2)s change? 
 
•  Use ”new” SRG in both momentum space (original 
application of SRG in nuclear structure) and truncated 
shells (“in-medium SRG”).  
Can this be an improved SRG  for nuclear structure? 
 
•  What about random interactions? 
 

       Thank you! 
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Happy Birthday! 
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Happy Birthday! 
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Additional slides 
 
for curious people 



Adventures in Quasi-dynamical Symmetries 

Simplicity, Symmetry, and Beauty in Nuclei/ Shanghai /  Sept 2018 73	  

 
 

Derivation of SRG, 
old and new 
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Standard SRG: want to increase tr (H(s)G) 
 
so choose evolution that maximizes derivative 
 
 
 
This derivative can be rewritten as  
            tr ( h [G,H])  using cyclic property of traces 

         
         The derivative is maximal when  
             h   is proportional to [G,H] 
 
          hence  

𝑑/𝑑𝑠 𝑡𝑟(𝐻(𝑠)𝐺)=𝑡𝑟  (𝑑𝐻(𝑠)/𝑑𝑠 𝐺)=𝑡𝑟  ([𝜂,𝐻(𝑠)]𝐺)	  

𝑑/𝑑𝑠 𝐻(𝑠)=  [𝜂,𝐻]=  [[𝐺,𝐻],𝐻]	  
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“New” SRG: want to decrease tr [H(s),G]2 
 
so choose evolution that maximizes derivative 
 
 
 
This derivative can be rewritten as  
            -tr ( h [[[H,G],G],H])    
         
         The derivative is maximal when  
             h   is proportional to [[[G,H],G],H] 
 
          hence  

− 𝑑/𝑑𝑠 𝑡𝑟([𝐻(𝑠),𝐺]↑2   )=−2  𝑡𝑟  ([𝑑𝐻/𝑑𝑠 ,𝐺][𝐻,𝐺])=−2𝑡𝑟([[𝜂,𝐻],𝐺][𝐻,𝐺])	  

𝑑/𝑑𝑠 𝐻(𝑠)=  [𝜂,𝐻]=  [[[[𝐺,𝐻],𝐺],𝐻],𝐻]	  
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20,28Ne 
 
USDB interaction 
 
G = SU(3)  
2-body Casimir 
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!!Ĉ z ,α = z z ,α
Casimir 

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define 
the fraction of the wavefunction in an irrep 

Some technical details 
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!!Ĉ z ,α = z z ,α
Casimir 

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define 
the fraction of the wavefunction in an irrep 

How	  are	  those	  
decomposi:ons	  calculated?	  
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How	  are	  those	  
decomposi:ons	  calculated?	  

Naïve method:  Solve eigenpair problems, e.g. 
 
H | Ψn > = En | Ψn >  
 
         and 
 
L2 | l; a > = l(l+1) |l; a  >  
 

…and then take overlaps,    |< l; a | Ψn >|2  

PROBLEM: the spectrum of L2 is highly degenerate (labeled by a );  
Need to sum over all a not orthogonal to | Ψn > ! 
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!!Ĉ z ,α = z z ,α
Casimir 

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define 
the fraction of the wavefunction in an irrep 

This can be done very efficiently 
using the Lanczos algorithm 

(see, e.g., CWJ, PRC 91, 034313 (2015)  
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(Cornelius Lanczos) 

There	  is	  another	  way	  
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(Cornelius Lanczos) 

There	  is	  another	  way	  

The Lanczos 
Algorithm!
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(Cornelius Lanczos) 

There	  is	  another	  way	  

  

€ 

A v 1 =α1
 v 1 + β1

 v 2
  

€ 

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

  

€ 

A v 3 =   

€ 

β2
 v 2 +α3

 v 3 + β3
 v 4

  

€ 

A v 4 =   

€ 

β3
 v 3 +α4

 v 4 + β4
 v 5

Starting from some initial vector (the “pivot”) v1 , the Lanczos algorithm  
iteratively creates a new basis (a “Krylov space”) in which to  
diagonalize the matrix A. 

Eigenvectors are then expressed as a linear combination of the  
“Lanczos vectors”:    |ψ> = c1 |v1> + c2 |v2> + c3 |v3> + … 
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(Cornelius Lanczos) 

There	  is	  another	  way	  

Eigenvectors are expressed as a linear  
combination of the “Lanczos vectors”:     
 
|ψ> = c1 |v1> + c2 |v2> + c3 |v3> + … 

It is easy to read off the overlap of an eigenstate 
with the “pivot” :  
                            |< v1 |ψ >|2 = c1

2 

   
Furthermore, the only eigenvectors (of A) that are  
contained in the Krylov space are those with  
nonzero overlap with the pivot |v1> . 

If A is say L2 then we can efficiently expand any state |v1> into  
its components with good L.  
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(Cornelius Lanczos) 

There	  is	  another	  way	  

This trick has been applied before 

Decomposition of wavefunction into SU(3) components,  
looking at effect of spin-orbit force:  
V. Gueorguiev,  J. P  Draayer, and C. W. J.,  PRC 63, 014318 (2000).   
 

Computing strength functions 
 
Caurier, Poves, and Zuker, Phys. Lett. B252,  13 (1990);  
PRL  74, 1517 (1995) 
Caurier et al, PRC 59, 2033 (1999) 
Haxton, Nollett, and Zurek, PRC 72, 065501 (2005) 

Present calculations carried out using BIGSTICK shell-model code: 
Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013).  
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12C 

Phenomenological Cohen-Kurath force (1965) in 0p shell 
  m-scheme dimension:  51 
 
NCSM: N3LO chiral 2-body force SRG evolved* to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV 
m-scheme dimension: 35 million 

*code courtesy of P. Navratil,  
any mistakes in using it are mine! 

(Calculations carried out using  
BIGSTICK shell-model code: 
Johnson, Ormand, and Krastev,  
Comp. Phys. Comm. 184, 2761 
 (2013). ) 
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10B 

Phenomenological Cohen-Kurath m-scheme dimension:  84 
 
NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV 
m-scheme dimension: 12 million 
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11B 

Phenomenological Cohen-Kurath m-scheme dimension:  62 
 
NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV 
m-scheme dimension: 20 million 
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9Be 

Phenomenological Cohen-Kurath m-scheme dimension:  62 
 
NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV 
m-scheme dimension: 5.2 million 
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